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Throughout this document let Γ always denote a metrized graph with a fixed
orientation.

1. The Laplacian on BDV(Γ)

1.1. Reminder.

i.) We have defined CPA(Γ) := {f : Γ → R | f continuous, piecewise affine}
and Zh(Γ) as the set of all continuous functions f : Γ → R such that f
is piecewise C2 (i.e. exists vertex set Xf ⊆ Γ such that Γ \ Xf is finite
union of open intervals and restriction of f to each of those is C2) and
f ′′(x) ∈ L1(Γ, dx).
Furthermore D(Γ) := {f : Γ → R | d~vf(p) exists ∀p ∈ Γ, ~v ∈ Tp(Γ)} and
Laplacian

(1) ∆Zh := −f ′′(x)dx+
∑
p∈Γ

(−
∑

~v∈Tp(Γ)

d~vf(p))δp(x).

ii.) Obviously CPA(Γ) ⊆ Zh(Γ) and ∆Zh|CPA(Γ) = ∆CPA.

iii.) Let A := A(Γ) be the Boolean algebra of subsets of Γ generated by the
connected open sets. Each S ∈ A is a finite disjoint union of sets isometric
to open, half-open or (possibly degenerate) closed intervals.

iv.) For f ∈ D(Γ) we have defined a finitely additive set function mf on A by
requiring that for each S ∈ A have

(2) mf (S) =
∑
p∈b(S),
p/∈S

∑
~v∈In(p,S)

d~vf(p)−
∑
p∈b(S),
p∈S

∑
~v∈Out(p,S)

d~vf(p).

Here b(S) = S ∩ Γ \ S as usual and for p ∈ Γ define In(p, S) as the set of
all ~v ∈ Tp(Γ) for which p + t~v belongs to S for all sufficiently small t > 0.
Accordingly Out(p, S) := Tp(Γ) \ In(p, S).

v.) The linear subspace BDV(Γ) ⊆ D(Γ) is defined as the set of functions f ∈
D(Γ) of bounded differential variation, i.e. there exists B > 0 such that for
any countable family F of pairwise disjoint sets of A have

(3)
∑
Si∈F

|mf (Si)| ≤ B.

vi.) For f ∈ BDV(Γ) the function mf extends to a finite, signed Borel measure
m∗f of total mass 0 on Γ.
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1.2. Definition. For f ∈ BDV(Γ) define the Laplacian ∆(f) as the finite, signed
Borel measure

∆(f) := m∗f .

1.3. Lemma. Zh(Γ) ⊆ BDV(Γ) and for f ∈ Zh(Γ) have ∆(f) = ∆Zh(f).

Proof: Let f ∈ Zh(Γ) and Xf a vertex set for Γ such that f ∈ C2(Γ \Xf ). To see
that f ∈ D(Γ) we need to show that d~vf(p) exists for all p ∈ Xf and ~v ∈ Tp(Γ).
Hence let p ∈ Xf and ~v ∈ Tp(Γ) and let t0 > 0 such that p + t~v ∈ Γ \Xf for all
t ∈ (0, t0). Furthermore abuse notation by writing f(t) for f(p+ t~v) and observe
that f ∈ C2((0, t0)). Obviously d~vf(p) exists if and only if limt→0+ f

′(t) exists.
So let ε > 0 and choose 0 < δ < t0 in a way that

∫
(0,δ)
|f ′′(t)dt| < ε, which is

possible as f ′′ ∈ L1(Γ, dx). Then for all t1, t2 ∈ (0, δ) we get

(4) |f ′(t2)− f ′(t1)| =
∣∣∣∣∫ t2

t1

f ′′(t)dt

∣∣∣∣ ≤ ∫ t2

t1

|f ′′(t)| dt < ε,

hence limt→0+ f
′(t) exists and f ∈ D(Γ).

Now let {Ei}i∈N be family of pairwise disjoint sets in A. By [BR10, Prop.
3.5(B)] we can assume that Ei ∈ A is connected and closed ∀i ∈ N, hence
even further we may assume that {Ei}i∈N consists of disjoint sets which are
either a closed interval or an isolated point. For p ∈ Γ \ Xf have mf ({p}) =
−
∑

~v∈Tp(Γ) d~vf(p) = 0 as seen before, and for a closed interval [t0, t1] on an edge

of Γ \Xf obtain with (2) and (4)

|mf ([t0, t1])| =

∣∣∣∣∣∣∣∣
∑

p∈b([t0,t1]),
p∈[t0,t1]

∑
~v∈Out(p,[t0,t1])

d~vf(p)

∣∣∣∣∣∣∣∣ = |f ′(t1)− f ′(t0)| ≤
∫ t1

t0

|f ′′(t)| dt.

Using this obtain∑
i∈N

|mf (Ei)| ≤
∑
p∈Xf

|mf ({p})|+
∫

Γ

|f ′′(t)| dt <∞,

hence f ∈ BDV(Γ) as desired.
It remains to show that ∆(f) = ∆Zh(f). For this it suffices to show equality

on points p ∈ Xf and open intervals (c, d) contained in an edge of Γ \ Xf . For
p ∈ Xf get

∆(f)({p}) = −
∑

~v∈Tp(Γ)

d~vf(p) = ∆Zh(f)({p}).
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For (c, d) as above get by (2) that

∆(f)((c, d)) = mf ((c, d)) =
∑

p∈b((c,d)),
p/∈(c,d)

∑
~v∈In(p,(c,d))

d~vf(p)

= f ′(c)− f ′(d) = −
∫ d

c

f ′′(x)dx = ∆Zh(f)((c, d)).

�

1.4. Proposition. Let f ∈ BDV(Γ) and assume

(5) ∆(f) = g(x)dx+
∑
pi∈X

cpiδpi(x)

for a piecewise continuous function g ∈ L1(Γ, dx) and a finite set X ⊆ Γ. Fur-
thermore let Xg ⊆ Γ be a vertex set containing X and the finitely many points
where g is not continuous. Put cpi := 0 ∀pi ∈ Xg \X. Then the following holds:

i.) f ′′(x) = −g(x) ∀x ∈ Γ \Xg,
ii.) f ∈ Zh(Γ),

iii.) ∆(f)({pi}) = cpi ∀pi ∈ Xg.

Proof. Consider an edge in Γ\Xg, identifying it with an interval (a, b) via our cho-
sen parametrization. For each x ∈ (a, b) have −

∑
~v∈Tx(Γ) d~vf(x) = ∆(f)({x}) =

0, where the last equality follows from (5) as x /∈ X, hence f ′(x) exists.
For small h > 0 get

f ′(x+ h)− f ′(x) = −(−(−f ′(x) + f ′(x+ h)))

= −(−(
∑

p∈b([x,x+h]),
p∈[x,x+h]

∑
~v∈Out(p,[x,x+h])

d~vf(p)))

= −∆(f)([x, x+ h]) = −
∫ x+h

x

g(t)dt.

Analogously for h < 0 obtain f ′(x + h) − f ′(x) = −(−f ′(x + h) + f ′(x)) =

∆(f)([x+ h, h]) =
∫ x
x+h

g(t)dt = −
∫ x+h

x
g(t)dt. Hence

f ′′(x) = lim
h→0

f ′(x+ h)− f ′(x)

h
= lim

h→0

(
−1

h
·
∫ x+h

x

g(t)dt

)
= −g(x),

which shows i.), while ii.) and iii.) are direct consequences. �

1.5. Corollary. If f ∈ BDV(Γ) and ∆(f) =
∑k

i=1 ciδpi is a discrete measure,
then f ∈ CPA(Γ).

Proof. Since ∆(f) discrete, obtain by 1.4 ii.) that f ∈ Zh(Γ) and hence ∆(f) =
∆Zh(f). Fixing appropriate vertex set X for Γ we see by 1.4 i.) that f ′′(x) =
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−g(x) = 0 on Γ \ X, so f(x) is affine on each segment of Γ \ X =⇒ f ∈
CPA(Γ). �

2. Finite signed Borel measures on Γ

Our aim now is to show that every finite signed Borel measure on Γ of total
mass 0 already is the Laplacian of some function in BDV(Γ). We first remind of
some measure-theoretic statements.

2.1. Reminder.

i.) (Weak convergence) Let X be metric space with Borel σ-algebra Σ. We say
that a sequence {µn} of Borel measures converges weakly to Borel measure
µ if for every f ∈ Cbd(X) have

lim
n→∞

∫
X

fdµn =

∫
X

fdµ.

Analogously define weak convergence for signed Borel measures.
ii.) (Hahn decomposition) Let µ be finite signed measure on measurable space

(X,Σ). There exist two measurable sets P,N such that
a.) P ∪N = X and P ∩N = ∅,
b.) µ(E) ≥ 0 ∀E ∈ Σ with E ⊆ P ,
c.) µ(E) ≤ 0 ∀E ∈ Σ with E ⊆ N .

We get (nonnegative) measures µ+ and µ− by µ+(E) = µ(P ∩ E) and
µ−(E) = µ(N ∩ E) ∀E ∈ Σ.

Both µ+ and µ− are finite (nonnegative) measures and satisfy

(6) µ = µ+ − µ−.

The measure |µ| = µ+ + µ− is the variation of µ and |µ|(X) is called the
total variation of µ.

iii.) With (6) one can show a ”triangle inequality”∣∣∣∣∫ fdµ

∣∣∣∣ =

∣∣∣∣∫ fdµ+ −
∫
fdµ−

∣∣∣∣
≤
∣∣∣∣∫ fdµ+

∣∣∣∣+

∣∣∣∣∫ fdµ−
∣∣∣∣

≤
∫
|f | dµ+ +

∫
|f | dµ−

=

∫
|f | d|µ| .

(7)

2.2. Definition. Let ν be finite signed Borel measure on Γ. A sequence {νn}n∈N
of finite signed Borel measures converges moderately well to ν if:

(A) There is bound B > 0 such that |νn|(Γ) ≤ B ∀n ∈ N.
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(B) For each segment D ⊆ Γ (open, closed, half-open) we have limn→∞ νn(D) =
ν(D).

2.3. Remark. Let ν and {νn} as in Def. 2.2.

i) As each set in A is finite disjoint union of segments, condition (B) implies
that

(8) lim
n→∞

νn(S) = ν(S) ∀S ∈ A,

in particular limn→∞ νn(Γ) = ν(Γ), and |ν|(Γ) ≤ B.
ii) By construction of appropriate step functions using characteristic func-

tions of elements in A, we obtain for f ∈ Cbd(Γ) with (8) that {νn}
converges weakly to ν.

iii) For any finite signed Borel measure ν on Γ there is a sequence of discrete
signed measures which converges moderately well to ν. For details of the
construction see [BR10, Section 3.6, p.63].

We can finally state our main proposition.

2.4. Proposition. Let ν be finite signed Borel measure on Γ. Fix z ∈ Γ and put
h(x) =

∫
Γ
jz(x, y)dν(y). Let M = |ν|(Γ) be the total variation of ν. Then:

i.) Have h ∈ BDV(Γ) and ∆(h) = ν − ν(Γ)δz.
ii.) For each x ∈ Γ and each ~v ∈ Tx(Γ) have |d~vh(x)| ≤M .

iii.) Let {νn}n∈N be any sequence of finite signed Borel measures which converges
weakly to ν. For each n ∈ N put hn(x) =

∫
Γ
jz(x, y)dνn(y). Then {hn}n∈N

converges pointwise to h on Γ and if there is B ≥ 0 such that |νn|(Γ) ≤ B
for all n ∈ N, the convergence is uniform.

iv.) If {νn}n∈N converges moderately well to ν, then for each x ∈ Γ and ~v ∈ Tx(Γ),

(9) lim
n→∞

d~vhn(x) = d~vh(x).

2.5. Remark. Statement iv.) need not hold if {νn}n∈N≥1
merely converges weakly

to ν. For example let Γ = [0, 1], z = 0, ν = δ1 − δ0 and let νn = δ1 − δ 1
n

for each

n ≥ 1. Then {νn} converges weakly to ν, but not moderately well, as for (0, 1] ⊆ Γ
we have ν((0, 1]) = 1 6= 0 = limn→∞ νn((0, 1])︸ ︷︷ ︸

=0

.

Use the explicit construction of jz(x, y) as in [BR10, Section 3.3, p.52] and obtain

h(x) = j0(x, 1)︸ ︷︷ ︸
=x

− j0(x, 0)︸ ︷︷ ︸
=0

= x

and analogously

hn(x) = j0(x, 1)︸ ︷︷ ︸
=x

− j0(x,
1

n
)︸ ︷︷ ︸

=x if x<1/n,
1/n else

= max(0, x− 1

n
).
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However for the unique ~v ∈ T0(Γ) we have d~vh(0) = 1, while d~vhn(0) = 0 ∀n ≥ 1.

2.6. Corollary. If ν is finite signed Borel measure on Γ with ν(Γ) = 0, then
there exists h ∈ BDV(Γ) such that ∆(h) = ν.

Proof. Follows immediately from 2.4, part i.). �

2.7. Corollary. Let ν be finite signed Borel measure on Γ, let y ∈ Γ and consider

Fy(x) := jν(x, y) :=

∫
Γ

jξ(x, y)dν(ξ).

Then Fy ∈ BDV(Γ) satisfying ∆x(Fy) = ν(Γ)δy − ν.

Proof. From [BR10, Prop. 3.3(A)] we see that for any z ∈ Γ,

Fy(x) =

∫
Γ

jξ(x, y)dν(ξ)

=

∫
Γ

jz(x, y)− jz(x, ξ)− jz(y, ξ) + jz(ξ, ξ)dν(ξ)︸ ︷︷ ︸
=:C<∞, independent of x

= ν(Γ)jz(x, y)−
∫

Γ

jz(x, ξ)dν(ξ)− C.

With 2.4 and as ∆xjz(x, y) = δy − δz obtain

∆x(Fy) = ν(Γ)(δy − δz)− (ν − ν(Γ)δz) = ν(Γ)δy − ν.
�

2.8. Proof of Proposition 2.4. Fix z ∈ Γ and put h(x) =
∫

Γ
jz(x, y)dν(y). We

first show that h ∈ D(Γ), i.e. need to show that d~vh(x) exists for each x ∈ Γ and
~v ∈ Tx(Γ). Observe that for such x,~v have

(10) d~vh(x) = lim
τ→0+

∫
Γ

jz(x+ τ~v, y)− jz(x, y))

τ
dν(y),

provided the limit exists.

Let S be a vertex set for Γ and consider τ small enough that x+ τ~v lies on the
edge of Γ\ (S ∪{x, z}) in direction of ~v. Let w.l.o.g. eτ = (x, x+ τ~v) be the open
segment contained in that edge. By [BR10, Prop. 3.3(A)] the function t→ jz(t, y)
is continuous in t and affine on edges of Γ \ (S ∪{y, z}) (in particular the slope is
constant there). So for y /∈ eτ we have (jz(x+ τ~v, y)− jz(x, y))/τ = ∂x,~vjz(x, y).
This implies that ∫

Γ

jz(x+ τ~v, y)− jz(x, y))

τ
dν(y)

=

∫
Γ\eτ

∂x,~vjz(x, y)dν(y) +

∫
eτ

jz(x+ τ~v, y)− jz(x, y))

τ
dν(y).

(11)
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If y ∈ eτ , [BR10, Prop. 3.3(A)] gives |(jz(x+ τ~v, y)− jz(x, y))/τ | ≤ 1 as ρ(x +
τ~v, x) = τ . If y /∈ eτ , [BR10, Prop. 3.3(D)] gives |∂x,~vjz(x, y)| ≤ 1. Hence
as τ → 0+ the first integral in (11) converges to

∫
Γ
∂x,~vjz(x, y)dν(y), while the

second one is bounded by |ν|(eτ ) and hence converges to 0. Thus the limit in
(10) exists and we obtain

(12) d~vh(x) =

∫
Γ

∂x,~vjz(x, y)dν(y).

Using again that |∂x,~vjz(x, y)| ≤ 1 ∀y ∈ Γ, we at once get |d~vh(x)| ≤ |ν|(Γ) = M ,
which proves ii.).

Now let {νn} be any sequence of finite signed Borel measures converging weakly
to ν and put hn(x) :=

∫
Γ
jz(x, y)dνn(y). For each x the kernel Fx(y) = jz(x, y) is

continuous in y, nonnegative and bounded by [BR10, Prop. 3.3(A)], so {hn} con-
verges pointwise to h just by definition of weak convergence in Reminder 2.1 i.).
Also by [BR10, Prop. 3.3(A)] we have |jz(x1, y)− jz(x2, y)| ≤ ρ(x1, x2) ∀x1, x2 ∈
Γ, so if there is bound B such that |νn|(Γ) ≤ B for all n, we obtain

|hn(x1)− hn(x2)|
2.1 iii.)

≤
∫

Γ

|jz(x1, y)− jz(x2, y)| d |ν|(y) ≤ B · ρ(x1, x2),

and the functions hn are all bounded by the same Lipschitz constant. As Γ is
compact, by standard calculus the convergence of {hn} to h is uniform, which
shows iii.).

For part iv.) assume that {νn} converges moderately well to ν. Let x ∈ Γ and
~v ∈ Tx(Γ); we need to show

lim
n→∞

d~vhn(x) = d~vh(x),

or equivalently using (12),

(13) lim
n→∞

∫
Γ

∂x,~vjz(x, y)dνn(y) =

∫
Γ

∂x,~vjz(x, y)dν(y).

We don’t give a full proof, just a short note: The difficulty is that ∂x,~vjz(x, y)
need not be continuous and ν and νn might have point masses. However the
conditions of moderately well convergence allow us to construct appropriate step
functions to show (13). For full details see [BR10, Section 3.6, pp.65-66].

It remains to show part i.). By Remark 2.3 iii.) we can choose sequence of
discrete signed measures {νn} converging moderately well to ν. Use notation of
hn as above. By definition of mhn and mh as in (2) and by (9) we see that each
S ∈ A satisfies

lim
n→∞

mhn(S) = mh(S).

For n ∈ N denote νn =
∑

i∈N λi,nδci,n for λi,n ∈ R, ci,n ∈ Γ. Then

hn(x) =

∫
Γ

jz(x, y)dνn(y) =
∑
i∈N

λinjz(x, ci,n)
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and hence

∆(hn) =
∑
i∈N

λi,n(δci,n − δz)

=
∑
i∈N

λi,nδci,n − δz
∑
i∈N

λi,n

= νn − νn(Γ) · δz.
So mhn(S) = ∆(hn)(S) = νn(S)− νn(Γ)δz(S) ∀S ∈ A. Passing to n→∞ yields
mh(S) = ν(S) − ν(Γ)δz(S). For countable family {Si} of disjoint sets in A it
follows then that ∑

i∈N

|mh(Si)| ≤ 2 |ν|(Γ),

so indeed h ∈ BDV(Γ).
The signed measure ∆(h) = m∗h attached to h is determined by its values on sets
in A, hence it must coincide with ν − ν(Γ)δz. This finishes the proof. �
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